Object classification with artificial neural networks: A comparative analysis

DSpace/Manakin Repository

Show full item record

Title Object classification with artificial neural networks: A comparative analysis
Autor: Niewiadomski, Artur; Domeradzki, Kornel
URI: http://hdl.handle.net/11331/3491
Date: 2019
Źródło: Studia Informatica : systemy i technologie informacyjne. Nr 23 (2019), s. 43-56
Abstract: Object classification is a problem which has attracted a lot of research attention in recent years. Traditional approach to this problem is built on a shallow trainable architecture that was meant to detect handcrafted features. That approach works poorly and introduces many complications in situations where one is to work with more than a couple types of objects in an image with a large resolution. That is why in the past few years convolutional and residual neural networks have experienced a tremendous rise in popularity. In this paper, we provide a review on topics related to artificial neural networks and a brief overview of our research. Our review begins with a short introduction to the topic of computer vision. Afterwards we cover briefly the concepts of neural networks, convolutional and residual neural networks and their commonly used models. Then we provide a comparative performance analysis of the previously mentioned models in a binary and multi-label classification problem. Finally, multiple conclusions are drawn, which are to serve as guidelines for future computer vision systems implementations.

Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Uznanie autorstwa-Na tych samych warunkach 3.0 Polska Except where otherwise noted, this item's license is described as Uznanie autorstwa-Na tych samych warunkach 3.0 Polska

Search DSpace


Advanced Search

Browse

My Account

Statistics