Planics 2.0 - a Tool for Composing Services
Artur Niewiadomski\(^1\), Wojciech Penczek\(^1,2\)

\(^{1}\)Institute of Computer Science, Siedlce University, Poland \(^{2}\)Institute of Computer Science, Polish Academy of Sciences, Poland

Web service composition problem
- SOA concept: simple, independent components with well-defined interfaces
- the most common SOA realization: Web services
- Web service composition for realization of complex objects
- automatic composition relieves a user of:
 - manual preparation of execution plans
 - matching services to each other
 - choosing optimal component providers

SMT-based abstract planning
- Abstract planning problem for a query \(q\) encoded as the formula \(\varphi^q_k\)
- \(\varphi^q_k\) is satisfiable iff there exists a solution for \(q\) of the length \(k\)

Planning phases
- abstract planning
- searching for abstract plans - multisets of service types
- SMT- and GA-based planners
- multiset exploration - finding CAPs
- concrete planning
- querying registry and Web services
- collecting offers and constraints
- choosing the best offers
- SMT, GA, and hybrid planners

PlanICS system architecture
- user interface:
 - ontology browser
 - plan viewer
 - plan executor
- execution of plans
- a user query
- abstract plans
- service selection
- context:
 - abstract plans
 - plans
 - offers
 - service registry
 - service provider
 - source of semantics

Key concepts of PlanICS
- Static knowledge (ontology)
- Dynamic knowledge (WS offers)
- User intention (query)

Ontology
- OWL + embedded PlanICS language
- Service types - representing groups of services of similar functionality
- Artifacts - types of objects processed by services
- Stamps - special object types describing certain execution features

Hybrid concrete planning
- Combining advantages of both algorithms
- Short time \(\checkmark\)
- Good quality \(\checkmark\)
- High probability \(\checkmark\)

References
- SMT-based Abstract Temporal Planning, PNSE 2014, Authors: A, B
- Genetic Algorithm to the Power of SMT: a Hybrid Approach to Web Service Composition Problem, Service Computation 2014: 44-48, Authors: A, B, C
- SMT versus Genetic and OpenOpt Algorithms: Concrete Planning in the PlanICS Framework, Fundamenta Informaticae (133), 2014, Authors: A, B, C, D, G
- Towards SMT-based Abstract Planning in PlanICS Ontology, KEOD 2013: 123-131, Authors: A, B
- Evolutionary Algorithms for Abstract Planning, PPAM(1) 2013: 392-401, Authors: A, B, C

Artur Niewiadomski\(^1\)\@uph.edu.pl, penczek@ipipan.waw.pl

This work has been supported by the National Science Centre under the grant No. 2011/01/B/ST6/01447.\(^{3}\)

artur.niewiadomski@uph.edu.pl, penczek@ipipan.waw.pl